Mathematics - 3 (Hons.)

Answer any six questions.

- 1. (a) State $\in -\delta e$ definition of the limit of a function of one real variable and use the definition to show that $\lim_{x \to 1} f(x) = 5$, where f(x) = 2x + 3.
 - (b) If a function f(x) is continuous in a closed and bounded interval [a, b], prove that the function f(x) has a greatest and a least values.
- 2. (a) If y' + y' = 2x, prove that: $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$
 - (b) State and prove Euler's theorem for a homogeneous function of three independent variables.
- 3. (a) Find the condition that the straight line $x \cos \alpha + y \sin \alpha = p$ may touch the curve $x^m y^n = a^{m+n}$
 - (b) Establish the formula $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$ for a plane curve, where symbols have their usual meanings.
 - 4. (a) For the curve $r = f(\theta)$, the radius of curvature ρ at any point is given by

$$\rho = \frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2} \text{ where } r_1 = \frac{dr}{d\theta} \text{ and } r_2 = \frac{d^2r}{d^2\theta}.$$

nttp://www.lnmuonline.com

- (b) Find the maximum value of $x^3y^2(1-x-y)$, where $x \neq 0$, $y \neq 0$ and $x+y\neq 1$.
- 5. Evaluate any two of the following integrals:

(a)
$$\int \frac{dx}{(1+x^2)\sqrt{(1-x^2)}}$$
(b)
$$\int \frac{dx}{(x-\alpha)\sqrt{(\beta-x)}}$$
(c)
$$\int \cos^2 x \sin 4x \, dx$$
(d)
$$\int e^{-x} \cos^2 x \, dx$$
Evaluate any two of the following:
(a)
$$\int_0^1 \tan^{-1} x \, dx$$
(b)
$$\int_0^{\pi/2} \cos^n x \cos nx \, dx$$
(c)
$$\int_0^{\infty} \frac{\tan^{-1} \alpha x \tan^{-1} \beta x}{x^2} \, dx$$
(d)
$$\int_0^{\pi/2} \frac{dx}{5+4\cos x}$$

http://www.lnmuonline.com

- 7. (a) For any curve prove that, $s = \int \frac{r dr}{\sqrt{r^2 p^2}}$, where S denotes the arc length of the curve and other symbols have usual meanings.
 - Find the whole area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- Find the surface area of a right cone whose semi-certical angle is a,, height h and base a circle of radius a. Also, find the volume of the cone.
 - (a) Define uniform continuity of a function of a real variable. Prove that a function continuous on a closed and bounded interval is uniformly continuous on it.
 - (b) If a function f is differentiable in [a, b] and $f(a) \neq f(b)$ then prove that f(x) assumes all values between f(a) and f(b) at least once in [a, b].
 - 10. (a) State and prove Cauchy's general principle of convergence of a sequence.

(b) If
$$\lim_{x\to\infty} x_n = l$$
, prove that $\lim_{x\to\infty} \frac{x_1 + x_2 + \dots + x_n}{n} = l$.

11. (a) State and prove Leibnitz's rule regarding convergence of an alternating series.

nttp://www.lnmuonline.com

- (b) Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{(\log^n)^n}$.
- 12. (a) Define absolute convergence and conditional convergence of an infinite series of real numbers. Prove that every absolutely convergent series is convergent but not conversely.
 - (b) Test the convergence of any two of the following series :

(i)
$$\sum_{n=1}^{\infty} \frac{\sqrt{(n+1)} - \sqrt{(n-1)}}{n}.$$

(iii)
$$\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot r^2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} x^2 + \dots to \infty \quad \text{(iii)} \quad \sum_{n=2}^{\infty} (\log n)^{\log n}$$

(iv)
$$1 + \frac{1}{2^2} + \frac{2^2}{3^3} + ... + \frac{(n-1)^{n-1}}{n^n} + + to \infty$$