Mathematics - 3 (Hons.)

Answer any six questions.

- State and prove Leibnitz's theorem to find the nth derivative of a product of two functions of x.
 - (b) If $y=e^{a\sin^{-1}x}$, prove that $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+a^2)y_n=0$.
- 2. (a) State and prove Euler's theorem on homogeneous functions of two independent variables.
 - (b) Expand $e^{\sin x}$ as far as the term involving x^4 .
 - 3. (a) Find the condition that the line $x \cos \alpha + y \sin \alpha = p$ should touch the curve $x^m v^n = a^{m+n}$
 - (b) Show that in the exponential curve $y=be^{x/a}$ the subtangent is of constant length and subnormal varies as the square of the ordinate.
 - 4. (a) Find the radus of curvature for the pedal curve p = f(r).
 - (b) For the curve $r^m = a^m \cos m\theta$, prove that $e = \frac{a^m}{(m+1)r^{m-1}}$
 - 5. Evaluate any two of the following integrals:

(a)
$$\int \frac{dx}{(x-3)\sqrt{x+1}}$$
 (b)
$$\int \frac{dx}{5+3\cos x}$$

(b)
$$\int \frac{dx}{5+3\cos x}$$

(c)
$$\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$
 (d) $\int x^p \sin q^x dx$

(d)
$$\int x^p \sin q^x dx$$

6. Evaluate any two of the following:

(a)
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 (b) $\int_{0}^{\pi} \frac{dx}{a + b \cos x} (a > b > 0)$

(b)
$$\int_{0}^{\pi} \frac{dx}{a+b\cos x} (a>b>0)$$

nttp://www.lnmuonline.com

(c)
$$\int_{0}^{\pi/2} \log \sin x dx$$

$$\int_{0}^{\pi/2} \cos^n x dx$$

- 7. (a) Find the area of the loop of the curve $ay^2 = x^2(a-x)$
 - (b) Find the area of the cardioid $r=a(1+\cos\theta)$.

http://www.lnmuonline.com

- 8. (a) Find the perimeter of the loop of the curve $3ay^2 = x(x-a)^2$.
 - (b) Find the volume of the solid generated by revolving the cardioid $r=a(1+\cos\theta)$ about the initial line.

http://www.lnmuonline.com

- (a) Obtain Lagrange's condition for Maxima or Minima of functions of two independent variables.
 - (b) Prove that $B(m,n) = \frac{|\overline{(m)}|\overline{(n)}}{|\overline{(m+n)}|}$
- 10. (a) Show that every convergent sequence is bounded.
- (b) Show that: $\lim_{x \to \infty} n^{1/n} = 1$