## 2021

Time: 3 Hours

Maximum Marks: 90

Candidates are required to give their answers in

their own words as far as practicable.

The figures in the margin indicate full marks.

Answer any six questions.

State  $\alpha - \delta$  definition of limit of a function,

Prove that every differentiable function is

continuous.

HG (2) -M (3) Sc. & Arts / D-811

Page-1

(b) If  $y = (\sin^{-1} x)^2$ , Prove that  $(1-x^2)y_{n+2} + (2n+1)xy_{n+1} - n^2y_n = 0$ 

(a) State and prove Maclaurin's theorem.

(b) If 
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

Find the condition that the line

 $x \cos \alpha + y \sin \alpha = p$  should touch the curve

$$\frac{x^m}{a^m} + \frac{y^m}{b^m} = 1.$$

Show that is any curve

$$\frac{\text{Sub normal}}{\text{Sub tangent}} = \left(\frac{\text{length of normal}}{\text{length of tangent}}\right)^2$$

HG (2) -M (3) Sc. & Arts / D-811

Page-2

https://www.lnmuonline.com



-

- Find the radius of curvature in pedal form.
- (b) Prove that for a curve given by

$$r^2 = a^2 \cos 2\theta$$
, we have  $e = \frac{a^2}{3r}$ 

5. Evaluate any two of the following:

(a) 
$$\int \frac{x^2+1}{x(x^2-1)} dx$$

(b) 
$$\int \frac{dx}{(1+x^2)\sqrt{1-x^2}}$$

(c) 
$$\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$

(d) 
$$\int \frac{dx}{5+3\cos x}$$

6. Evaluate any two of the following:

(a) 
$$\int_0^a \frac{x^4}{\sqrt{a^2-x^2}} dx$$

HG (2) -M (3) Sc. & Arts / D-811

(b) 
$$\int_0^{\pi/2} \cos^n x \cos nx \, dx$$

(c) 
$$\int_{\alpha}^{\beta} \frac{dx}{\sqrt{(x-\alpha)(\beta-x)}}$$

(d) 
$$\int_0^{\pi} \frac{dx}{a + b \cos x} (a > b > 0)$$

7. (a) If 
$$B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$
, Prove that 
$$B(m, n) = B(n, m)$$

(b) Find the area of a loop of the curve

$$r^2 = a^2 \cos 2\theta$$

8. (a) Find the perimeter of the loop of the curve

$$9 \text{ ay}^2 = (x - 2a)(x - 5a)^2$$

(b) Find the perimeter of the cardioid

$$r = a(1 - \cos \theta)$$

Page-3

- 9. Find the surface area of a right circular cone whose semi-vertical angle is α, height h and base is circular of radius a. Also find the volume of the cone.
- (a) State and prove Cauchy's general principle of convergence for a sequence.
  - (b) Prove that

$$\lim_{n \to \infty} \frac{1}{n} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = 0$$

- 11. (a) State and prove comparison test to examine the convergence of an infinite series of nonnegative terms.
  - (b) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$$

HG (2) -M (3) Sc. & Arts / D-811

Page-5

- 12. (a) State and prove Gauss's test for the convergence of an infinite series.
  - (b) In an absolutely convergent series, show that the series formed by its positive terms alone is convergent and the series formed by its negative terms alone is convergent.

••••

https://www.lnmuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से