HG(3)-Math(8) Num. Anal. (Sc & Arts)

2021

Time: 3 Hours

Maximum Marks: 70

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

- 1. (a) Explain Bisection method for obtaining real root of an equation.
 - (b) Solve the equation $x^3 x 1 = 0$ by using false position method.
- 2. (a) Explain Newton's Raphson's method for solving an algebraic and transcendental equation.

HG (3) - Math (8) Num. Anal. (Sc. & Arts) / D-265

Page-1

intps://www.injindoin

- (b) Evaluate √12 by applying Newton's Raphson formula.
- 3. (a) Establish Newton Gregory forward interpolation formula.
 - (b) Evaluate $\Delta \left(\frac{x^2}{\cos 2x} \right)$
- 4. (a) Prove that divided differences are symmetric function of their arguments
 - (b) Find the form of the function given by:

x : 3 2 1 -1

T(x) : 3 12 15 -21

- 5. (a) Using Euler's method, find approximate value of y when x = 0.6 of $\frac{dy}{dx} = 1 2xy$ given that y=0 when x = 0 (take h=0.2)
- HG (3) Math (8) Num. Anal. (Sc. & Arts) / D-265

Page-2

- (b) Using Runge Kutta method of forth order, Solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0)=1 at x = 0.2
- 6. (a) Establish general Quadrature formula for equidistant ordinates.
 - (b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal rule.
- (a) Solve the following equation by Gauss elimination method.

$$x + 2y + z = 3$$

 $2x + 3y + 3z = 10$
 $3x - y + 2z = 13$

3x-y+2z=13

(b) Solve the following equation by Gauss fordan elimination method.

$$x + y + z = 1$$

$$4x + 3y - z = 6$$

$$3x + 5y + 3z = 4$$

HG (3) - Math (8) Num. Anal. (Sc. & Arts) / D-265

Page-3

8. Solve the following equation by Relaxation method:

$$10x - 2y \div z = 12$$

$$x + 9y - z = 10$$

$$2x + v + 11z = 20$$

9. Find the eigen - value and eigen vector of the matrix

$$A = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{vmatrix}$$

- 10. Write short notes on any two of the following:
 - (a) Weddel's rule of integration
 - (b) Regula Falsi method
 - (c) Gauss fordan method

....